(1) Franco, R.; Oñatibia-Astibia, A.; Martínez-Pinilla, E. Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients 2013, 5 (10), 4159–4173. http://dx.doi.org.helicon.vuw.ac.nz/10.3390/nu5104159.
(2) Al-Shobaili, H. A. Oxidants and Anti-Oxidants Status in Acne Vulgaris Patients with Varying Severity. Ann. Clin. Lab. Sci. 2014, 44 (2), 202–207.
(3) Martínez-Pinilla, E.; Oñatibia-Astibia, A.; Franco, R. The Relevance of Theobromine for the Beneficial Effects of Cocoa Consumption. Front. Pharmacol. 2015, 6. https://doi.org/10.3389/fphar.2015.00030.
(4) Haskó György; Pacher Pál. Regulation of Macrophage Function by Adenosine. Arterioscler. Thromb. Vasc. Biol. 2012, 32 (4), 865–869. https://doi.org/10.1161/ATVBAHA.111.226852.
(5) Barletta Kathryn E.; Ley Klaus; Mehrad Borna. Regulation of Neutrophil Function by Adenosine. Arterioscler. Thromb. Vasc. Biol. 2012, 32 (4), 856–864. https://doi.org/10.1161/ATVBAHA.111.226845.
(6) Basheer, R.; Strecker, R. E.; Thakkar, M. M.; McCarley, R. W. Adenosine and Sleep–Wake Regulation. Prog. Neurobiol. 2004, 73 (6), 379–396. https://doi.org/10.1016/j.pneurobio.2004.06.004.
(7) Marzo, V. D.; Sepe, N.; Petrocellis, L. D.; Berger, A.; Crozier, G.; Fride, E.; Mechoulam, R. Trick or Treat from Food Endocannabinoids? Nature 1998, 396 (6712), 636–636. https://doi.org/10.1038/25267.
(8) Tomaso, E. di; Beltramo, M.; Piomelli, D. Brain Cannabinoids in Chocolate. Nature 1996, 382 (6593), 677–678. https://doi.org/10.1038/382677a0.
(9) PubChem. Phenethylamine https://pubchem.ncbi.nlm.nih.gov/compound/1001 (accessed May 17, 2021).
(10) Bertazzo, A.; Comai, S.; Brunato, I.; Zancato, M.; Costa, C. V. L. The Content of Protein and Non-Protein (Free and Protein-Bound) Tryptophan in Theobroma Cacao Beans. Food Chem. 2011, 124 (1), 93–96. https://doi.org/10.1016/j.foodchem.2010.05.110.
(11) Gunduz-Cinar, O.; Hill, M. N.; McEwen, B. S.; Holmes, A. Amygdala FAAH and Anandamide: Mediating Protection and Recovery from Stress. Trends Pharmacol. Sci. 2013, 34 (11), 637–644. https://doi.org/10.1016/j.tips.2013.08.008.
(12) Sugiura, T.; Kobayashi, Y.; Oka, S.; Waku, K. Biosynthesis and Degradation of Anandamide and 2-Arachidonoylglycerol and Their Possible Physiological Significance. Prostaglandins Leukot. Essent. Fat. Acids PLEFA 2002, 66 (2–3), 173–192. https://doi.org/10.1054/plef.2001.0356.
(13) Tsuboi, K.; Takezaki, N.; Ueda, N. The N-Acylethanolamine-Hydrolyzing Acid Amidase (NAAA). Chem. Biodivers. 2007, 4 (8), 1914–1925. https://doi.org/10.1002/cbdv.200790159.
(14) Bortolozzi, A.; Díaz‐Mataix, L.; Scorza, M. C.; Celada, P.; Artigas, F. The Activation of 5-HT2A Receptors in Prefrontal Cortex Enhances Dopaminergic Activity. J. Neurochem. 2005, 95 (6), 1597–1607. https://doi.org/10.1111/j.1471-4159.2005.03485.x.
(15) Barroso, N.; Rodriguez, M. Action of Beta-Phenylethylamine and Related Amines on Nigrostriatal Dopamine Neurotransmission. Eur. J. Pharmacol. 1996, 297 (3), 195–203. https://doi.org/10.1016/0014-2999(95)00757-1.
(16) Irsfeld, M.; Spadafore, M.; Prüß, B. M. β-Phenylethylamine, a Small Molecule with a Large Impact. WebmedCentral 2013, 4 (9).
(17) Sotnikova, T. D.; Budygin, E. A.; Jones, S. R.; Dykstra, L. A.; Caron, M. G.; Gainetdinov, R. R. Dopamine Transporter-Dependent and -Independent Actions of Trace Amine Beta-Phenylethylamine. J. Neurochem. 2004, 91 (2), 362–373. https://doi.org/10.1111/j.1471-4159.2004.02721.x.
(18) Sabelli, H.; Fink, P.; Fawcett, J.; Tom, C. Sustained Antidepressant Effect of PEA Replacement. J. Neuropsychiatry Clin. Neurosci. 1996, 8 (2), 168–171. https://doi.org/10.1176/jnp.8.2.168.
(19) Aghajanian, G. K.; Marek, G. J. Serotonin, via 5-HT2A Receptors, Increases EPSCs in Layer V Pyramidal Cells of Prefrontal Cortex by an Asynchronous Mode of Glutamate Release. Brain Res. 1999, 825 (1), 161–171. https://doi.org/10.1016/S0006-8993(99)01224-X.
(20) Marek, G. J.; Wright, R. A.; Gewirtz, J. C.; Schoepp, D. D. A Major Role for Thalamocortical Afferents in Serotonergic Hallucinogen Receptor Function in the Rat Neocortex. Neuroscience 2001, 105 (2), 379–392. https://doi.org/10.1016/S0306-4522(01)00199-3.
(21) Radulovacki, P.; Djuricic-Nedelson, M.; Chen, E. H.; Radulovacki, M. Human Tryptamine Metabolism Decreases during Night Sleep. Brain Res. Bull. 1983, 10 (1), 43–45. https://doi.org/10.1016/0361-9230(83)90072-2.
(22) Davison, K.; Howe, P. R. C. Potential Implications of Dose and Diet for the Effects of Cocoa Flavanols on Cardiometabolic Function. J. Agric. Food Chem. 2015, 63 (45), 9942–9947. https://doi.org/10.1021/acs.jafc.5b01492.
(23) Fraga, C. G.; Litterio, M. C.; Prince, P. D.; Calabró, V.; Piotrkowski, B.; Galleano, M. Cocoa Flavanols: Effects on Vascular Nitric Oxide and Blood Pressure. J. Clin. Biochem. Nutr. 2011, 48 (1), 63–67. https://doi.org/10.3164/jcbn.11-010FR.
(24) Heiss, C.; Keen, C. L.; Kelm, M. Flavanols and Cardiovascular Disease Prevention. Eur. Heart J. 2010, 31 (21), 2583–2592. https://doi.org/10.1093/eurheartj/ehq332.
(25) Jaramillo Flores, M. Cocoa Flavanols: Natural Agents with Attenuating Effects on Metabolic Syndrome Risk Factors. Nutrients 2019, 11 (4), 751. https://doi.org/10.3390/nu11040751.
(26) Mastroiacovo, D.; Kwik-Uribe, C.; Grassi, D.; Necozione, S.; Raffaele, A.; Pistacchio, L.; Righetti, R.; Bocale, R.; Lechiara, M. C.; Marini, C.; Ferri, C.; Desideri, G. Cocoa Flavanol Consumption Improves Cognitive Function, Blood Pressure Control, and Metabolic Profile in Elderly Subjects: The Cocoa, Cognition, and Aging (CoCoA) Study—a Randomized Controlled Trial. Am. J. Clin. Nutr. 2015, 101 (3), 538–548. https://doi.org/10.3945/ajcn.114.092189.
(27) Murphy, K. J.; Chronopoulos, A. K.; Singh, I.; Francis, M. A.; Moriarty, H.; Pike, M. J.; Turner, A. H.; Mann, N. J.; Sinclair, A. J. Dietary Flavanols and Procyanidin Oligomers from Cocoa (Theobroma Cacao) Inhibit Platelet Function. Am. J. Clin. Nutr. 2003, 77 (6), 1466–1473. https://doi.org/10.1093/ajcn/77.6.1466.
(28) Keen, C. L.; Holt, R. R.; Oteiza, P. I.; Fraga, C. G.; Schmitz, H. H. Cocoa Antioxidants and Cardiovascular Health. Am. J. Clin. Nutr. 2005, 81 (1), 298S-303S. https://doi.org/10.1093/ajcn/81.1.298S.
(29) Mitchell, E. S.; Slettenaar, M.; vd Meer, N.; Transler, C.; Jans, L.; Quadt, F.; Berry, M. Differential Contributions of Theobromine and Caffeine on Mood, Psychomotor Performance and Blood Pressure. Physiol. Behav. 2011, 104 (5), 816–822. https://doi.org/10.1016/j.physbeh.2011.07.027.
(30) Goya, L.; Martín, M. Á.; Sarriá, B.; Ramos, S.; Mateos, R.; Bravo, L. Effect of Cocoa and Its Flavonoids on Biomarkers of Inflammation: Studies of Cell Culture, Animals and Humans. Nutrients 2016, 8 (4). https://doi.org/10.3390/nu8040212.
(31) Sugimoto, N.; Miwa, S.; Hitomi, Y.; Nakamura, H.; Tsuchiya, H.; Yachie, A. Theobromine, the Primary Methylxanthine Found in Theobroma Cacao, Prevents Malignant Glioblastoma Proliferation by Negatively Regulating Phosphodiesterase-4, Extracellular Signal-Regulated Kinase, Akt/Mammalian Target of Rapamycin Kinase, and Nuclear Factor-Kappa B. Nutr. Cancer 2014, 66 (3), 419–423. https://doi.org/10.1080/01635581.2013.877497.
(32) Campbell, J. D. Lifestyle, Minerals and Health. Med. Hypotheses 2001, 57 (5), 521–531. https://doi.org/10.1054/mehy.2001.1351.
(33) Jamison JR. Mineral Deficiency: A Dietary Dilemma? J. Nutr. Environ. Med. 1999, 9 (2), 149–158. https://doi.org/10.1080/13590849961744.
(34) McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; de Benoist, B. Worldwide Prevalence of Anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutr. 2009, 12 (4), 444–454. https://doi.org/10.1017/S1368980008002401.
(35) Cherasse, Y.; Urade, Y. Dietary Zinc Acts as a Sleep Modulator. Int. J. Mol. Sci. 2017, 18 (11). https://doi.org/10.3390/ijms18112334.
(36) Prakash, A.; Bharti, K.; Majeed, A. B. A. Zinc: Indications in Brain Disorders. Fundam. Clin. Pharmacol. 2015, 29 (2), 131–149. https://doi.org/10.1111/fcp.12110.
(37) de Baaij, J. H. F.; Hoenderop, J. G. J.; Bindels, R. J. M. Magnesium in Man: Implications for Health and Disease. Physiol. Rev. 2015, 95 (1), 1–46. https://doi.org/10.1152/physrev.00012.2014.
(38) Long, S.; Romani, A. M. Role of Cellular Magnesium in Human Diseases. Austin J. Nutr. Food Sci. 2014, 2 (10).
(39) Rosanoff, A.; Weaver, C. M.; Rude, R. K. Suboptimal Magnesium Status in the United States: Are the Health Consequences Underestimated? Nutr. Rev. 2012, 70 (3), 153–164. https://doi.org/10.1111/j.1753-4887.2011.00465.x.
(40) Bailey, R. L.; Dodd, K. W.; Goldman, J. A.; Gahche, J. J.; Dwyer, J. T.; Moshfegh, A. J.; Sempos, C. T.; Picciano, M. F. Estimation of Total Usual Calcium and Vitamin D Intakes in the United States. J. Nutr. 2010, 140 (4), 817–822. https://doi.org/10.3945/jn.109.118539.
(41) Wiranda -; Syukur, S.; Aziz, H. DETERMINATION OF CALCIUM (Ca) AND MAGNESIUM (Mg) CONTENT IN CACAO (Theobroma Cacao Linn) FERMENTATION AND NON FERMENTATION BY SPECTROPHOTOMETRY. J. Ris. Kim. 2015, 3 (1), 96. https://doi.org/10.25077/jrk.v3i1.104.
(42) Office of Dietary Supplements - Calcium https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/ (accessed May 17, 2021).
(43) Calcium https://lpi.oregonstate.edu/mic/minerals/calcium (accessed May 17, 2021).
(44) Seem, S. A.; Yuan, Y. V.; Tou, J. C. Chocolate and Chocolate Constituents Influence Bone Health and Osteoporosis Risk. Nutr. Burbank Los Angel. Cty. Calif 2019, 65, 74–84. https://doi.org/10.1016/j.nut.2019.02.011.
(45) Antiga, E.; Verdelli, A.; Bonciani, D.; Bonciolini, V.; Caproni, M.; Fabbri, P. Acne: A New Model of Immune-Mediated Chronic Inflammatory Skin Disease. G. Ital. Dermatol. E Venereol. Organo Uff. Soc. Ital. Dermatol. E Sifilogr. 2015, 150 (2), 247–254.
(46) Bowe, W. P.; Patel, N.; Logan, A. C. Acne Vulgaris: The Role of Oxidative Stress and the Potential Therapeutic Value of Local and Systemic Antioxidants. J. Drugs Dermatol. JDD 2012, 11 (6), 742–746.
(47) Jović, A.; Marinović, B.; Kostović, K.; Čeović, R.; Basta-Juzbašić, A.; Bukvić Mokos, Z. The Impact of Pyschological Stress on Acne. Acta Dermatovenerol. Croat. ADC 2017, 25 (2), 1133–1141.
(48) Xie, Z.; Miller, G. M. Beta-Phenylethylamine Alters Monoamine Transporter Function via Trace Amine-Associated Receptor 1: Implication for Modulatory Roles of Trace Amines in Brain. J. Pharmacol. Exp. Ther. 2008, 325 (2), 617–628. https://doi.org/10.1124/jpet.107.134247.
(49) Jenkins, T. A.; Nguyen, J. C. D.; Polglaze, K. E.; Bertrand, P. P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8 (1). https://doi.org/10.3390/nu8010056.